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Magellan Research Questions 

•  Are the open source cloud software stacks 
ready for DOE HPC science? 

•  Can DOE cyber security requirements be met 
within a cloud? 

•  How usable are cloud environments for 
scientific applications? 

•  Are the new cloud programming models useful 
for scientific computing? 

•  Can DOE HPC applications run efficiently in the 
cloud?  What applications are suitable for 
clouds? 

•  When is it cost effective to run DOE HPC 
science in a cloud? 

•  What are the ramifications for data intensive 
computing? 
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SUBTITLE HERE IF NECESSARY 

Cloud Deployment Models 

Physical Resource Layer Infrastructure as 
a  Service (IaaS) 

Platform as a  
Service (PaaS) 

Software as a  
Service (SaaS) 
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Magellan User Survey 

Program Office 

Advanced Scientific Computing Research 17% 

Biological and Environmental Research 9% 

Basic Energy Sciences -Chemical Sciences  10% 

Fusion Energy Sciences 10% 

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Access to additional resources 

Access to on-demand (commercial) paid resources closer to 
deadlines 

Ability to control software environments specific to my application 

Ability to share setup of software or experiments with collaborators 

Ability to control groups/users 

Exclusive access to the computing resources/ability to schedule 
independently of other groups/users 

Easier to acquire/operate than a local cluster 

Cost associativity? (i.e., I can get 10 cpus for 1 hr now or 2 cpus 
for 5 hrs at the same cost) 

MapReduce Programming Model/Hadoop 

Hadoop File System 

User interfaces/Science Gateways: Use of clouds to host science 
gateways and/or access to cloud resources through science 

Program Office  

High Energy Physics 20% 

Nuclear Physics 13% 

Advanced Networking Initiative (ANI) Project 3% 

Other 14% 
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Are the open source cloud software 
stacks ready for DOE HPC science? 

Can DOE cyber security requirements 
be met within a cloud? 



Amazon Web Services 

•  Web-service API to IaaS offering 
•  Non-persistent local disk in VM  
•  Simple Storage Service (S3) 

– scalable persistent object store  
•  Elastic Block Storage (EBS) 

– persistent, block level storage 
•  Offers different instance types 

– standard, micro, high-memory, high-cpu, 
cluster computer, cluster GPU 
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Private Cloud Software 

•  Eucalyptus 
– open source IaaS implementation, API 

compatible with AWS  
– KVM and Xen can be used as hypervisors 
– Walrus & Block Storage 

•  interface compatible to S3 & EBS 
– experience with 1.6.2 and 2.0 

•  Other options 
– OpenStack, Nimbus, etc  

8 



Experiences with Eucalyptus (1.6.2) 

•  Scalability 
–  VM network traffic is routed through a single node 
–  limit on concurrent VMs due to messaging size  

•  Requires tuning and tweaking 
–  co-exist with services such as DHCP 
–  advanced Nehalem CPU instructions  

•  Allocation and Accounting 
–  hard to ensure fairness since first come first 

serve 
•  Limited Logging and Monitoring  
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Security in the Cloud 

•  Trust issues 
–  User provided images uploaded and shared 
–  Root privileges by untrained users opens the door 

for mistakes 
•   Effective Intrusion Detection System (IDS) 

strategy challenging 
–  Due to the ephemeral nature of virtual machine 

instances  
•  Fundamental threats are the same, security 

controls are different 
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Can DOE HPC applications run 
efficiently in the cloud?  What 

applications are suitable for clouds? 



Workloads 

•  High performance computing codes 
– supported by NERSC and other 

supercomputing centers 
•  Mid-range computing workloads 

–  that are serviced by LBL/IT Services, other 
local cluster environments 

•  Interactive data intensive processing 
– usually run on scientist’s desktops 
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Experiment Setup 

•  Workloads  
– HPCC 
– Subset of NERSC-6 application benchmarks 

for EC2 with smaller input sizes  
•  represent the requirements of the NERSC workload 
•  rigorous process for selection of codes 
•  workload and algorithm/science-area coverage 

•  Platforms 
– Amazon 
– Lawrencium (IT cluster) 
– Magellan  
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Application Benchmarks 
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Application Benchmarks 
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Application Scaling 
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Comparison of PingPong BW 
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Amazon Reliability: A Snapshot 
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BLAST Performance 
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Queue Wait Time Vs VM Startup Overhead 

20 

Windows Azure VM startup time,2010  
Yogesh Simmhan, Microsoft 

Batch queue prediction times from QBETS 
service on NSF TeraGrid resources, 2010 

BReW: Blackbox Resource Selection for 
eScience Workflows 
collaboration w/ Emad Soroush, Yogesh 
Simmhan, Deb Agarwal, Catharine van Ingen 



What codes work well? 

•  Minimal synchronization,  modest I/O 
requirements 

•  Large messages or very little 
communication 

•  Low core counts (non-uniform 
execution and limited scaling) 

•  Generally applications that would do 
well on midrange clusters 
– Future: Analyzing data from our batch 

queue profiling (through IPM)  
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How usable are cloud environments 
for scientific applications? 



Application Case Studies 

•  Magellan has a broad set of users 
–  various domains and projects (MG-RAST, 

JGI, STAR, LIGO, ATLAS, Energy+) 
–  various workflow styles (serial, parallel) 

and requirements 
•  Two use cases discussed today 

–  MG-RAST - Deep Soil sequencing 
–  STAR – Streamed real-time data analysis 

STAR 
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MG-RAST: Deep Soil Analysis 

Background: Genome sequencing of two soil 
samples pulled from two plots at the 
Rothamsted Research Center in the UK.  

Goal: Understand impact of long-term plant 
influence (rhizosphere) on microbial 
community composition and function. 

Used: 150 nodes for one week to perform one 
run (1/30 of work planned) and used 
NERSC for fault tolerance and recovery 

Observations: MG-RAST application is well 
suited to clouds.  User was already familiar 
with the Cloud 

Image Courtesy:  
Jared Wilkening 
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Early Science - STAR 

Details 
•  STAR performed Real-time analysis of 

data coming from Brookhaven Nat. Lab 
•  First time data was analyzed in real-

time to a high degree 
•  Leveraged existing OS image from 

NERSC system 
•  Started out with 20 VMs at NERSC and 

expanded to ANL.  

Image Courtesy:  
Jan Balewski, STAR collaboration  
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Application Design and 
Development 

•  Image creation and management  
– system administration skills 
– determining what goes on image etc 

•  Workflow and data management 
– need to manage job distribution and data 

storage, archiving explicitly  
•  Performance and reliability needs to be 

considered 
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Are the new cloud programming 
models useful for scientific 

computing? 
What are the ramifications for data 

intensive computing? 



Hadoop Stack 

•  Open source reliable, scalable distributed 
computing 
–  implementation of MapReduce 
–  Hadoop Distributed File System (HDFS) 

Core Avro 

MapReduce HDFS 

Pig Chukwa Hive HBase 

Source: Hadoop: The Definitive Guide 

Zoo 
Keeper 
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HDFS Architecture 
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Hadoop for Science 

•  Advantages of Hadoop  
–  transparent data replication, data locality 

aware scheduling 
–  fault tolerance capabilities 

•  Hadoop Streaming 
– allows users to plug any binary as maps 

and reduces 
–  input comes on standard input 
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Application Examples 

•  Bioinformatics applications (i.e., 
BLAST) 
– parallel search of input sequences 
– Managing input data format 

•  Tropical storm detection 
– binary file formats can’t be handled in 

streaming 
•  Atmospheric River Detection  

– maps are differentiated on file and 
parameteC 
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HDFS vs GPFS (Time) 
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•  Deployment 
–  all jobs run as user “hadoop” affecting file 
permissions 
–  less control on how many nodes are used - 
affects allocation policies 

•  Programming: No turn-key solution 
–  using existing code bases, managing input 
formats and data  

•  Additional benchmarking, tuning 
needed, Plug-ins for Science  

Challenges 
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Comparison of MapReduce 
Implementations 
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MARIANE 
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Collaboration w/ Zacharia Fadika, Elif Dede, Madhusudhan 
Govindaraju, SUNY Binghamton  



Data Intensive Science 

•  Goal: Evaluating hardware and software 
choices for supporting next generation 
data problems 

•  Evaluation of Hadoop 
– using mix of synthetic benchmarks and 

scientific applications 
– understanding application characteristics 

that can leverage the model  
•  data operations: filter, merge, reorganization  
•  compute-data ratio  
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Tools for managing code 
ensembles/UQ  

•  Code ensembles  
– problem that is decomposed into a large 

number of loosely coupled tasks 
•  Running VASP on 125K crystals in the 

Materials Genome database 
•  Uncertainty Quantification 

•  Evaluate Hadoop for managing CEs 
– compare with database (MySQL, 

MongoDB), workflow tools, Message 
Queues 

37 

(collaboration w/ Dan Gunter, Elif Dede) 



Unique Needs and Features of a 
Science Cloud 

•  Access to parallel filesystems and low-latency high 
bandwidth interconnect 
–  access to legacy data sets 

•  Bare metal provisioning for applications that require 
custom environments  
–  that cannot tolerate the performance hit from virtualization  

•  Preinstalled, pre-tuned application software stacks 
–  specific libraries and performance considerations 

•  Customizations for site-specific policies 
–  authentication, fairness 

•  Alternate MapReduce implementations  
–  account for scientific data and analysis methods  
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Conclusions 

•  Current day cloud computing solutions have 
gaps for science  
–  performance, reliability, stability 
–  programming models are difficult for legacy apps 
–  security mechanisms and policies 

•  HPC centers can adopt some of the technologies 
and mechanisms 
–  support for data-intensive workloads 
–  allow custom software environments 
–  provide different levels of service 
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Questions? 

Lavanya Ramakrishnan 
LRamakrishnan@lbl.gov 
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